С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Звуковая волна - это непрерывная волна с меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц). Звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого участка устанавливается определенная величина амплитуды. Каждому участку присваивается определенный код. Этот процесс называется временной дискретизацией. Естественно, чем меньше "размер" участка, тем выше качество звукозаписи. Представление непрерывного звукового сигнала в виде дискретных цифровых сигналов выполняют специальные устройства – аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). АЦП и ЦАП являются компонентами звуковых карт.
Современные звуковые карты могут обеспечить 16, 32, 64- битную глубину кодирования, т.е. производят кодирование 216,232, 264 различных уровней сигнала. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:
N = 2I , где I - глубина звука.
Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.
И так, качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.
Количество измерений в секунду может лежать в диапазоне от 8000 до 48000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц – качеству звучания аудио-CD. Возможны как моно-, так и стереорежимы.
Звуковая информация может быть представлена в аналоговой или дискретной форме:
при аналоговом представлении физическая величина принимает бесконечное множество значений, и её значения изменяются непрерывно,
при дискретном представлении физическая величина принимает конечное множество значений, и её величина изменяется скачкообразно.
Хотя естественной для органов чувств человека является аналоговая форма, универсальной все же следует считать дискретную форму представления информации с помощью некоторого набора знаков. В частности, именно таким образом представленная информация обрабатывается компьютером, передаётся по компьютерным и некоторым иным линиям связи.
Звуковая информация преобразуется из аналоговой формы в дискретную путём дискретизации, т. е. разбиения непрерывного (аналогового) сигнала на отдельные элементы. В процессе дискретизации производится кодирование - присвоение каждому элементу конкретного значения в форме кода.
Дискретизация - преобразование непрерывного потока информации (например, звука) в набор дискретных значений, каждому из которых присваивается значение его кода.
Источник представляет сообщение в алфавите, который называется первичным, далее это сообщение попадает в устройство, преобразующее и представляющее его во вторичном алфавите.
Код – правило, описывающее соответствие знаков (или их сочетаний) первичного алфавита знаком (их сочетаниями) вторичного алфавита.
Кодирование – перевод информации, представленной сообщением в первичном алфавите, в последовательность кодов.
Декодирование – операция, обратная кодированию.
Кодер – устройство, обеспечивающее выполнение операции кодирования.
Декодер – устройство, производящее декодирование.
При решении задач используются следующие понятия:
^ – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.
Глубина звука (глубина кодирования) - количество бит на кодировку звука.
Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле N= 2I где I – глубина звука.
^ – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц). 1 измерение за 1 секунду -1 ГЦ.
1000 измерений за 1 секунду 1 кГц. Обозначим частоту дискретизации буквой f. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.
Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц.
Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.
^ – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.
Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.
Разрядность регистра -число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2I =N различных значений.
Размер цифрового моноаудиофайла ( V) измеряется по формуле:
V=f*t*I, где f –частота дискретизации (Гц), t – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в битах.
Размер цифрового стереоаудиофайла ( V) измеряется по формуле:
V=2*f*t*I, сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.
Учащимся полезно выдать таблицу 1, показывающую, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:
Тип сигнала | Частота дискретизация, КГц | ||
44,1 | 22,05 | 11,025 | |
16 бит, стерео | 10,1 Мб | 5,05 Мб | 2,52 Мб |
16 бит, моно | 5,05 Мб | 2,52 Мб | 1,26 Мб |
8 бит, моно | 2,52 Мб | 1,26 Мб | 630 Кб |
Устно. Известно, что Петя поет самым громким голосом в классе. На каком из ниже представленных графиков отражен голос Пети?
1. 2. 3. 4.
^
Размер цифрового файла
Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.
Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.
В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность?
Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?
Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук?
Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера?
Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц?
Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.
Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? (таблица)
Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? (таблица)
Оцените информационный объем высококачественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц. (таблица)
Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен (таблица):
а) 700 Кбайт;
б) 6300 Кбайт.
Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? (таблица)
Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуть частоте дискретизации 44,1 кГц и разрешении 16 бит.
Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?
Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?
Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22 050 Гц. Какова разрядность аудиоадаптера?
Объем свободной памяти на диске — 0,1 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 1001Гц?
Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 кГц;
Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен 700 Кбайт;
Какой объем данных имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)?
Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20-битном кодировании и частоте дискредитации 44.1 кГц.
Определите количество уровней звукового сигнала при использовании 8-битных звуковых карт.
Оцените информационный объем стерео аудиофайла длительностью звучания 30 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 кГц;
Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:16 бит и 48 кГц.
Определение качества звука (используется таблица).
Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.
Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.
Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем стерео аудиофайла длительностью звучания в 10 сек. равен 940 Кбайт;
Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука?
I. Размер цифрового файла
1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. ([1], стр. 156, пример 1)
Решение:
Формула для расчета размера (в байтах) цифрового аудио-файла: A=D*T*I/8.
Для перевода в байты полученную величину надо разделить на 8 бит.
22,05 кГц =22,05 * 1000 Гц =22050 Гц
A=D*T*I/8 = 22050 х 10 х 8 / 8 = 220500 байт.
^
2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. ([1], стр. 157, №88)
Решение:
A=D*T*I/8. – объем памяти для хранения цифрового аудиофайла.
44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.
Ответ: ≈ 10 Мб
3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? ([1], стр. 157, №89)
Решение:
Формула для расчета частоты дискретизации и разрядности: D* I =А/Т
(объем памяти в байтах) : (время звучания в секундах):
2, 6 Мбайт= 2726297,6 байт
D* I =А/Т= 2726297,6 байт: 60 = 45438,3 байт
D=45438,3 байт : I
Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации
Ответ:
| ^ | Разрядность аудиоадаптера |
1 вариант | 22,05 КГц | 16 бит |
2 вариант | 44,1 КГц | 8 бит |
4. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? ([1], стр. 157, №90)
Решение:
Формула для расчета длительности звучания: T=A/D/I
(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):
5,25 Мбайт = 5505024 байт
5505024 байт: 22050 Гц : 2 байта = 124,8 сек
^
5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук? ([1], стр. 157, №91)
Решение:
Формула для расчета частоты дискретизации : D =А/Т/I
(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)
1,3 Мбайт = 1363148,8 байт
1363148,8 байт : 60 : 1 = 22719,1 Гц
^
6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера? ([1], стр. 157, №94)
Решение:
Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):
5, 1 Мбайт= 5347737,6 байт
5347737,6 байт: 120 сек : 22050 Гц= 2,02 байт =16 бит
^
7. Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц? ([1], стр. 157, №95)
Решение:
Формула для расчета длительности звучания T=A/D/I
(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)
0,01 Гб = 10737418,24 байт
10737418,24 байт : 44100 : 2 = 121,74 сек =2,03 мин
^
8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.
([2], стр. 76, №2.82)
Решение:
а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
15,625 Кбайт/с х 60 с = 937,5 Кбайт
б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт
^
Используется таблица
9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? ([1], стр. 157, №92)
Решение:
Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб
10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? ([1], стр. 157, №93)
Решение:
Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11, 025 КГц, разрядности аудиоадаптера — 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт
Т=665600 байт/11025 Гц/1 байт ≈60.4 с
^
11. Оцените информационный объем высокачественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц. ([2], стр. 74, пример 2.54)
Решение:
Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).
Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт
Ответ: 11 Мб
Ответ: а) 940 Кбайт; б) 2,8 Мбайт.
12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт
([2], стр. 76, №2.84)
Решение:
а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
700 Кбайт : 62,5 Кбайт/с = 11,2 с
б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт : 62,5 Кбайт/с = 100,8 с = 1,68 мин
Ответ: а) 10 сек; б) 1,5 мин.
13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? ([4], стр. 34, упражнение №34)
Решение:
Формула для расчета объема памяти A=D*T*I:
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)
Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)
^
Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1
256 (28) уровней интенсивности сигнала - качество звучания радиотрансляции, использованием 65536 (216) уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.
13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.
([2], стр. 76, №2.83)
Решение:
а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит : 10 сек = 770048 бит/с
3) 770048 бит/с : 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
^
б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит : 10 сек = 128614,4 бит/с
3) 128614,4 бит/с : 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции
^
14. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.
([2], стр. 77, №2.85)
Решение:
а).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
8 бит х 8 000 = 64 000 бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 7,8 Кбайт/с = 182,5 с ≈ 3 мин
б).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2= 1 536 000 бит = 192 000 байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 187,5 Кбайт/с = 7,6 с
Ответ: а) 3 минуты; б) 7,6 секунды.
^
При решении задач пользуется следующим теоретическим материалом:
Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,
плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация аналогового сигнала (частота измерения сигнала), горизонтальное разбиение - квантование по уровню. Т.е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.
Уровень «3»
15. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? ([2], стр. 77, №2.86)
Решение:
Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием 65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.
Ответ: в 2 раза.
^
16. Согласно теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.
Какова должна быть частота дискретизации звука, воспринимаемого человеком?
Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?
Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками). ([3], стр. ??, задача 2)
Решение:
Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппаратура и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра значительно больше.
^
Уровень»5»
17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита. ([3], стр. ??, задача 1)
Решение:
Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:
Длина кода в 3 бита означает 23 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:
«Округлять» значения высоты звука будем до ближайшего нижнего уровня:
Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия): 100 100 000 011 111 010 011 100 010 110.
Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантования 23 (3 бита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 28 (код длиной 8 бит).
Ответ: 100 100 000 011 111 010 011 100 010 110.
18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий. ([3], стр. ??, задача 3)
Решение:
В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м 72 см, г) равен 1 м 71 см 8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем выше уровень квантования, или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.
Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).
Ответ: чем выше уровень квантования, тем точнее передается звук.