Представление о системах счисления.
Система счисления(далее СС) - совокупность приемов и правил для записи чисел цифровыми знаками.
Наиболее известна десятичная СС, в которой для записи чисел используются цифры 0,1,:,9. Способов записи чисел цифровыми знаками существует бесчисленное множество. Любая предназначенная для практического применения СС должна обеспечивать:
- возможность представления любого числа в рассматриваемом диапазоне величин;
- единственность представления (каждой комбинации символов должна соответствовать одна и только одна величина);
- простоту оперирования числами;
Позиционные системы счисления имеют ряд преимуществ перед непозиционными: удобство выполнения арифметических и логических операций, а также представление больших чисел, поэтому в цифровой технике применяются позиционные системы счисления.
По этому принципу построены непозиционные СС.
В общем же случае системы счисления: A(B)=a1B1+a2B2 +...+anBn. Если положить, что Bi=q*Bi-1, а B1=1, то получим позиционную СС. При q=10 мы имеем дело с привычной нам десятичной СС.
На практике также используют другие СС:
q | Название | Цифры |
2 | двоичная | 0,1 |
3 | троичная | 0,1,2 |
8 | восьмеричная | 0,...,7 |
16 | шестнадцатиричная | 0,...,9,A, ...,F |
Если основание системы q превышает 10, то цифры, начиная с 10, при записи обозначают прописными буквами латинского: A,B,...,Z. При этом цифре 10 соответствуею знак 'A', цифре 11 - знак 'B' и т.д. В таблице ниже приводятся десятичные числа от 0 до 15 и их эквивалент в различных СС:
q=10 | q=2 | q=16 |
0 | 0 | 0 |
1 | 1 | 1 |
2 | 10 | 2 |
3 | 11 | 3 |
4 | 100 | 4 |
5 | 101 | 5 |
6 | 110 | 6 |
7 | 111 | 7 |
8 | 1000 | 8 |
9 | 1001 | 9 |
10 | 1010 | A |
11 | 1011 | B |
12 | 1100 | C |
13 | 1101 | D |
14 | 1110 | E |
15 | 1111 | F |
В позиционной СС число можно представить через его цифры с помощью следующего многочлена относительно q:
A=a1*q0+a2*q1+...+an*qn (1)
Выражение (1) формулирует правило для вычисления числа по его цифрам в q-ичной СС. Для уменьшения количества вычислений пользуются т.н. схемой Горнера. Она получается поочередным выносом q за скобки:
A=(...((an*q+an-1)*q+an-2)*q+...)*q+a1
результат вычисления многочлена будет всегда получен в той системе счисления, в которой будут представлены цифры и основание и по правилам которой будут выполнены операции.